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The dynamic stability of a thin plate in supersonic gas flow at low Strouhal num- 

bers is examined. The aerodynamic forces are determined on the basis of the 
same partition mesh as for the representation of the plate as a model of finite 

elements. Rectangular elements with four coordinates at each node are used. 
The number of dynamical variables is diminished to one at each node as a result 
of reducing the order of the equation of motion. Examples of computing the 

plate vibrations in a vacuum and in fluid flow are presented. 

Use of the finite-element method in aeroelasticity problems in the general case when 
the aerodynamic effects are determined numerically, is connected with great difficulties. 

This is related to the fact that a partition mesh not associated with the finite-element 
model representing the system is used to compute the aerodynamic forces. The aerody- 
namic mesh ordinarily consists of a comparatively large number of rhomboidal [l] or 
rectangular @] cells and changes as the Mach number varies. The finiteelement mesh 

has a larger spacing and is coupled rigidly to the structure. Changing it requires signifi- 

cant computational efforts. 
It seems expedient to develop that approach to aeroelasticity problems in which the 

computation of the aerodynamic effects is performed on the basis of the same partition 
mesh as the description of the elastic-mass properties of the system. In order that an 
increase in the mesh spacing should not reduce the accuracy of the aerodynamic force 
calculation, the downwash within the limits of the cells is represented as a power series 
of the coordinates. The series coefficients are determined completely by the vector of 
the generalized coordinates of the element. Using the ordinary conjugate conditions of 
elements, the equation of motion of the elastic plate model in supersonic flow can be 
written in closed form without introducing a priori vibration modes 
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Here Q is the vector of the generalized model coordinates, Qa is the vector of the aero- 
dynamic forces at the model nodes, and h is a frequency parameter. The aerodynamic 
matrices of the model A,, the stiffness K and mass M matrices are formed from the 

corresponding matrices of the separate elements with their mutual arrangement taken 

into account. The elements of the matrices A, depend on the Mach number M,, and the 
flow velocity U. In the case of triangular elements, the method to obtain the matrices 

A, has been developed in [3]. So-called matched elements, which have four generalized 
coordinates in each node, are often used in investigating the vibrations of thin plates. A 

fine partition mesh is needed in dynamics problems of inhomogeneous systems, hence, 

the order of the system (0.1) determined by the rank of the matrices M and A,, grows 

strongly while it is constrained by the size of the computer memory. This constraint is 
most essential in investigating nonconservative systems which require determination of 
the eigenvalues of non-Hermitian matrices. 

One of the possible means of diminishing the order of the system (0. l), i.e. the num- 
ber of dynamical variables of the model, without altering the partition mesh is proposed 

in [4]. It is based on introducing two systems of basis functions : “complete” to obtain 
the stiffness matrix K and “shortened” to obtain the mass matrix M. 

This method is used herein to reduce the number of degrees of freedom of a model of 

matched elements in the dynamic stability problem of a plate in supersonic flow. The 

dynamical stability of a square cantiliver plate in gas flow with low Strouhal numbers is 

considered. 

1. Determination of the aerodynamic forcer. Within the framework 
of linear nonstationary supersonic flow theory, the fundamental equation for the perturba- 
tion potential @ (z, y, 2, t) is [5] 
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If the plate deformation is representable as z (z, y, t) = 2 (x, y)e”, where h = 
6 f io, CO is the speed of sound, then the solution of (1.1) in the 2 = 0 plane is 
written as 

CD tz, Y, 0, t) = - + $ j w (E, rl, t) (rs)-l’g x (1.2) 
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Here W (g, q, t) is the downwash at the point E, q which is connected with the plate 
deflection mode by the relationship 

w (E, ?J, t) = (-$ + IJ --&) 2 (L rl7 t) (I. 3) 

The integration in (1.2) is over the area S (I& fi) included in the reverse Mach cone 
with apex at the point z: y. let us henceforth limit ourselves to the case of low Strouhal 
numbers k = hL,/ U < 1, where L, is the characteristic plate dimension along the 
flow direction. This permits expansion of the integrand in (1.2) in series. For low values 
of the Strouhal number (k - 0.1 - 0.2 in practice) we can limit ourselves to first 
order terms in k by neglecting terms 0 (k2) which correspond to the apparent masses. 
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The potential then becomes 

a+, Y, t) = 1 5 W($, q, t) [G, (L ‘1,X, y) + hG, (E, rb 5, y) ,/ U] d: dq (1.4) 
Wz,-ri) 

G,, = - (KY)-*/z / rr, G, = - ilf O2 (x - g) G, / p’ 

Piston theory can be used for M&> 1 and higher order terms in the expansion must 
be taken into account in (1.2) for Ic ,.- 1 . 
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Let us consider the model of a plate 
of finite elements. A plate divided 
into a number of rectangular ete- 
ments with sides a’, 6’ is shown in 

Fig. 1. The intersections of the par- 
tition lines are called nodes. !_.et us 

take the mode of the displacement 
of an individual element in the form 

,i = grrawjeht 0.5) 

Here $ (r, ~1’) is a row of basis func- 
tions, and wi is the vector of transverse 

displacements of the j th element. 
bet us take the shortened system 

V = (1, g*r 11*, E” ‘1*),(LS) 
g* = g’ / aJr q* = 11’ J 6’ 

0 0 

0 0 

1 0 

11 1 - 1 - 1 0 11 

According to (1.3), the downwash on the j th elemdnt becomes 

W’ (E’, q’, t) =I3 (u g + hip’) awjeht (1.7) 

Substituting (1.7) into (1.4) and discarding second order terms, we obtain the perturba- 
tion potential at the point (5, y) associated with the downwash at the j th element 

after integrating over the area ,S’ (t, q) of the jth element. Setting X, y equal to 

the coordinates of nodes 1 - 4 of the i th element in (1.8), we obtain the potential vec- 
tor at the nodes of the ith element which is due to downwash at the jth element (Fig. 1) 

@+j I- ( UC* + h&C’) WI (1.9) 

The elements of the matrices Co, C1 are evaluated by the formulas 

CL10 Ezz -C,,” = - bj 5 i (I- q*) Get-E* dq* (1.10) 
00 
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c/so = - Cl,” = - bj 5 i q*GodE*dq*, Go = Go (El*, Q*, ~1, YJ 
00 

Clll = bit i[(1 - E* - TJ* + E*q*) Go - (1 - q”) $1 clg* dv* (1.11) 
00 

11 

Ctzl == bJ @*(l 
00 

- q")Go + (1 - t-j*)%]dE*dq’ 

The subscript 1 here denotes the number of the row for elements of the matrices C. and 
takes on the values 1, 2, 3, 4. 

In determining the pressure pii (3, y) produced by the i th element, we assume that 

the potential within it is a linear combination ofpotentials of the nodal points 

@ij (xl, y’, t) = gTa@i@ IL 12) 

where xf , y’ is the local coordinate system of the ith element (Fig. l), and 4 (x’, y’) 

is the system of basis functions agreeing with (1.6). Substituting @ii (z’, y’, t) in the 

expression for the pressure [S] and taking account of (1.9), (1.12), we find 

p’j (5’. y’, t) = 2p. (-g- +- u +) @ii (5’, y’, t) = 0.13) 

2pJ UC 
[ 
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Let us use the method of virtual work to evaluate the transverse force vector at the 

nodes Paij, equivalent to the load Pi1 (cc’, y’, t) , We take the displacement mode of 
the i th element in the form (1.5). Then 

PaijeLt = uT 
ss 

9 (x’, y’) pG (2, y’, t) &’ &J (1.14) 
‘9 

Substituting (1.13) into (1.14) and integrating over the area of the i th element, we obtain 

Puii= 2p,U I UdCObi + h (dC1 +- eC”) &~]wJ 

--2 2 -1 1 4 2 2 i 

-2 2 --I 1 1 2 4 1 2 

-1 1 -2 2 ’ e=36 2 14 2 

--1 1 -2 2 1 2 2 4 

We introduce the mutual aerodynamic stiffness Bij and damping L)ij matrices for the 
ith element due to the motion of the j th element, Then 
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The column of the total forces Pai acting at the nodes of the i th element is calculated 
by summation over the j elements which lie completely or partially in the reverse 
Mach cone. The Eward theorem f5] on equivalent domains of integration which isvalid 

for k < 1 is used to compute the tip effect. For example, the integrands G, (E, q, X, 

y) and G, (E, q, I%, Y) in (1.10). (1.11) must be set equal to zero outside the domain 
Ri (see Fig. 1) in order to obtain the matrices B ik and Di” for the kth element lying 
partially within the Mach cone. Near the left edge ofthe plate Rs is givenby the inequal- 
ities 

E < - Plr - Yl + 5, E>-SIri+ (~-!%.4 

In order to form the aerodynamic matrices B and D of the whole model, the forces 
P,i must be summed at the nodes of adjacent elements by using the continuity condition 
for the displacements. The resultant aerodynamic forces depend linearly on the vector 
of the nodal dispfacements w of the model 

P, = 2pJPL,Bwe” J,- Zp,UL,L,,hDwe~’ U.15) 

The integralsin(l.10) and (1,ll)canbe evaluated analytically, but it is more expedient 
to realize the whole algorithm to obtain the matrices B and D on a digital computer. 

The domain of integration over the elements lying partially in the domain R* must be 
contracted for numerical integration in the relatio~hi~ (1.10) and (1.11) in order to 

avoid the singularities in the integrands. 

Let us consider a simple example of computing the aerodynamic forces, which will 
permit comparison between the approximate and the “exact” analytic solutions. Let a 

stiff rectangular plate with chord L, = 1 and the aspect ratio 2 perform harmonic oscil- 

lations around the leading edge x = 0, i.e. 

z (x, t) = Olzeiot 0.16) 

The plate is divided into 6 elements along the chord, and 12 along the span. It is suf- 

ficient to consider the left half of the plate because of symmetry of the problem. The 

aerodynamic stiffness B and damping D matrices were computed on a digital computer 

for a flow at ,ilo = v%. Substituting these matrices and the vector w (t) corresponding 
to the mode (1,16) into (1,14), we obtain values of the real and imagina~ parts of the 

aerodynamic forces at the nodal points. 
The results of the computation are represented in Fig. 2, where dimensionless values 

of the real PI* and the imaginary P2* parts of the nodal forces are plotted along the 
vertical axis. The numbers of partitions n parallel to the ox-axis are plotted along the 

4 
3 5 n I 3 5 I, 

Fig. 2 
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horizontal axis in the graphs. The values of the forces are superposed by points for the 

nodes in the different sections perpendicular to the flow and are conventionally connected 
by a solid line. The numbers of these sections m are indicated beside the broken lines 

being formed. 
The exact value of the nodal forces can easily be calculated for this example by pro- 

ceeding from the analytical expression for the pressure. The downwash corresponding to 

the mode of the displacement (1.16) is W (E, q, t) = cc (U + ht) eiot 

Substituting W (E, 11, t) into (1.2) we obtain an analytic expression for the potential 
distribution a 

-- +A+2S++~ 
n s 

x%A 
r- 2 + (5 - 2y) s 

I 
eAt, x > y 

CD (2, y, t) -z 
a X2 

- 7 nx-bT-- 2 1 8, X<Y 

Hence 

A = arcsin (1-z) , S = 1/?/) 

P(x,y)_j y[U (+--A) +4hS] t X>Y 

I 2poU% z< y 

The exact values of the nodal forces equivalent to the pressure p (x, y) can be obtained 
by using (1.14). The corresponding values of the real and imaginary parts of the forces 

are presented in Fig. 2, where they are conventionally connected by dashes. The good 
agreement between the approximate and exact values of the nodal forces far from the 

plate edges and the satisfactory agreement near the leading and side edges are seen from 
a comparison of the curves. The accuracy of the calculations can be raised by increasing 
the number of elements. 

Let us note that the values of the potential calculated at the model nodes agree with 

the exact values since the class of admissible displacements of the elements (1.5) in- 
cludes the displacement mode (1.16) for the example considered. Deviation of the com- 

puted forces from the exact values is related to the representation of the potential within 
the element (1.12). 

2. Model of an elr#tic plate of matched elomonta. Let usconsider 

the i th element of the mesh shown in Fig. 1. We introduce three coordinates [6] cp, 6, 

‘t in addition to the transverse displacement w at each node, in order to obtain its stiff- 
ness matrix Ki These quantities form the vector of the generalized coordinates of an 

element with 16 components 
q’ = co1 {w, cp, It), z} (2.1) 

We take the deflection mode of an element z*i in a form analogous to (1.5) by using 
the complete system of basis functions 

z*i (E”, q*, t) = XT (E*, q*) u*q+eh* (2.2) 

itT (g*, q*) = {E*‘, ‘q*‘}, I, k=0,1,2, 3 

The number matrix a* has the order 16 x16. 
Let us limit ourselves to the case of a homogeneous isotropic plate with bending stiff- 

ness Do. The density of the elastic strain energy is 
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qE,%s=~[(g)“+ ($$,‘+ 

2Y ($) (Z) -+2(1 -v,(+g$ 

Substituting z* in the form (2.2) we obtain 

8i (r, q’, 2) = -&qiTu*=Eu*qi, E(F&+= LY[$ $ + 

After integrating over the area Si we find the elastic strain energy of an element which 
can be represented as follows: 

The stiffness matrix Ki of an element governs the generalized force vector of the elastic 
strain Q* (t) conjugate to the vector qi (t) 

Qi = Kiqi, Qi = co1 {P,, N,, T,, H,] 

The components of the vector Q” are transverse elasticity P,’ and moment N,i, r,“, 
H,* forces originating at the nodes of the element as it deforms. 

We use the shortened system of basis functions g (g, 3) to obtain the mass matrix 
&fi of the element by taking the displacement mode in the form (1.5). Then the den- 
sity of the inertial forces on the element are 

Pm’ = - h2@# (g’, q’) aweAt (2.3) 

Here p is the material density, and h is the plate thickness. Substituting (2.3) and(l.14) 
and integrating over the area of the i th element, we obtain the vector of the inertial 
forces at the nodes (M* is a (4 x4) matrixofthe element mass) 

pmis _ h2&fiwi, Mi =c UT 1s phq$=dE dqa 
si 

The conjugate conditions of the elements expounded in Sect. 1, are supplemented by 

requirements of continuity of the variables rp, 8, t at the nodes in the case of an elas- 

tic plate. It is important to note that not only the continuity but also the smoothness of 
the deflection mode on the boundary of adjacent elements are assured upon compliance 
with the requirements mentioned, In this connection, the elements with the generalized 
coordinate (2.1) are called matched elements. Using the conjugate conditions, we can 
form the generalized coordinate vector q of the model. 

Writing the condition of equivalence of the forces Pa, P,, P, and of the moments 
i’V,, T,, He at each node, we obtain a system of four matrix equations 

K@‘J’w+ Kp'pcp + KPe6+K~+z+h%fw+ 
2p,v~L~wf2p~hUL*L,Dw=O 

KN"\v+KN~~I+R~~~+KN~z =O (2.4) 

K=*w+KTP~~~+KT~.~+KT~z=O 
K=ww+ K=Q~+Kna++ K=z=O 
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Here Kpw is a ( R x R ) sector of the stiffness matrix which describes the connection 
between the transverse forces P, and the displacementsw, Kwbetween the forces P, 
and the angles cp etc., and R is the number of free nodes of the model. 

It is seen from the system (2.4) that the variables cp, 6, t can be expressed linearly 

in terms of w. After matrix transformations such as those expounded in [4], the system 

(2.4) can be reduced to the following form : 

K*w + h2Mw + 2p,U2L,Bw + 2p,UhL,L,Dw = 0 (2.5) 

where K* is the reduced stiffness matrix. 
Consequently, the order of the matrix equation of motion of the model has been re- 

duced fourfold and becomes equal to the number of free nodes R. 

3. Example, of the computrtion. To estimate the accuracy of the solu- 
tion when using the proposed reduction of the number of degrees of freedom, let us con- 
sider the free vibrations of a square cantiliver plate with the edge length L = 0.24 m. 

The remaining plate parameters are: Young’s modulus E = 1.96 x lOI N/m2 (steel), 
Poisson’s ratio Y = 0.3, p = 7.8 x 103 kg/m” and h = 0.00227 m. 

Values of the circular frequencies w for a plate model from matched elements with 

(3 x 3), (4 x4) and (5 x 5) partitions, calculated by using a computer, are presented in 
Table 1, which also shows the frequencies of a model of unmatched elements with shor- 

tened mass matrices [4] and experimental data r]. 

Table 1 

matched elements unmatched elements 

tone ( 3x3 1 4x4 ] 5x5 3x3 1 4x4 1 5x5 Iexperiment 

1 205.0 206.6 207.2 205.4 206.6 206.8 208.4 
2 512.9 511.1 510.5 514.1 511.7 511.1 510.5 
3 1342.3 1324.4 1308.8 1379.9 1343.5 1320.8 1280.2 
4 1778.8 1730.4 2696.9 1766.8 1720.2 1689.8 1639.6 

The good agreement of the frequencies obtained for the matched elements to the ex- 
perimental data is seen from the table. The example presented illustrates the efficiency 

of reducing the number of degrees of freedom in the case of matched elements. 
The dynamic stability of the plate under consideration is investigated for the case of 

a flow incoming along the clamped side. A model of (5 x 5) square matched elements is 
selected for the computation. It has 30 degrees of freedom and assures no worse than 
3.5% accuracy in the determination of the first four vibration frequencies in a vacuum. 
The aerodynamic matrices describing the effect of the supersonic flow were calculated 

for a number of Mach number values without taking account of aerodynamic damping. 

The eigenvalues h = 6 A- io of (2.5) were determined for various flow velocities by 
using a digital computer. 

The behavior of il as the velocity changes is usually considered in the complex plane. 
As the flow velocity increases, the eigenvalues of the first two vibration tones h, and h, 
move along the o-axis while remaining pure imaginary. Starting with some velocity, 

the h, and h, converge. Finally, they become complex for the critical value Mu* = 3.1 ; 
the imaginary parts of I, and & agree, and the real parts differ in sign. The values of 
the frequencies o1 and 02 are presented below for various ~~ 
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M,= f2 
01 =239.Q 2:i3i) 

397:6 
2Y8 
385:6 

2:ig3 
37913 

2:Q”0 
352: 9 

3Ys 
02 = 356.8 317:s 

When using piston theory, the loss of stability occurs at lower values of &fs, hence, 
the critical frequencies are higher. Thus, the values M,* = 2.96, CO* = 386.9 are ob- 
tained by the finite element method in [8], and the values M,* = 2.78, w* = 384.6 by 
the Ritz method in [9]. This difference is apparently explained by the tip effect on the 
free edge parallel to the clamped edge of the plate. 

The amplitude and phase distributions of the vibrations at various points of the plate 
can be obtained with the aid of the eigenvectors calculated from (2.5), and the physical 
picture of the loss of stability can be explained. 

The authors are grateful to S. P, Strelkov for continued attention to the research and 
for useful discussions. 
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